Cargando…

Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials

The lithium thiophosphate (LPS) material class provides promising candidates for solid-state electrolytes (SSEs) in lithium ion batteries due to high lithium ion conductivities, non-critical elements, and low material cost. LPS materials are characterized by complex thiophosphate microchemistry and...

Descripción completa

Detalles Bibliográficos
Autores principales: Staacke, Carsten G., Huss, Tabea, Margraf, Johannes T., Reuter, Karsten, Scheurer, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458117/
https://www.ncbi.nlm.nih.gov/pubmed/36079988
http://dx.doi.org/10.3390/nano12172950
_version_ 1784786223152234496
author Staacke, Carsten G.
Huss, Tabea
Margraf, Johannes T.
Reuter, Karsten
Scheurer, Christoph
author_facet Staacke, Carsten G.
Huss, Tabea
Margraf, Johannes T.
Reuter, Karsten
Scheurer, Christoph
author_sort Staacke, Carsten G.
collection PubMed
description The lithium thiophosphate (LPS) material class provides promising candidates for solid-state electrolytes (SSEs) in lithium ion batteries due to high lithium ion conductivities, non-critical elements, and low material cost. LPS materials are characterized by complex thiophosphate microchemistry and structural disorder influencing the material performance. To overcome the length and time scale restrictions of ab initio calculations to industrially applicable LPS materials, we develop a near-universal machine-learning interatomic potential for the LPS material class. The trained Gaussian Approximation Potential (GAP) can likewise describe crystal and glassy materials and different P-S connectivities P [Formula: see text] S [Formula: see text]. We apply the GAP surrogate model to probe lithium ion conductivity and the influence of thiophosphate subunits on the latter. The materials studied are crystals (modifications of Li [Formula: see text] PS [Formula: see text] and Li [Formula: see text] P [Formula: see text] S [Formula: see text]), and glasses of the xLi [Formula: see text] S–(100 – x)P [Formula: see text] S [Formula: see text] type (x = 67, 70 and 75). The obtained material properties are well aligned with experimental findings and we underscore the role of anion dynamics on lithium ion conductivity in glassy LPS. The GAP surrogate approach allows for a variety of extensions and transferability to other SSEs.
format Online
Article
Text
id pubmed-9458117
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94581172022-09-09 Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials Staacke, Carsten G. Huss, Tabea Margraf, Johannes T. Reuter, Karsten Scheurer, Christoph Nanomaterials (Basel) Article The lithium thiophosphate (LPS) material class provides promising candidates for solid-state electrolytes (SSEs) in lithium ion batteries due to high lithium ion conductivities, non-critical elements, and low material cost. LPS materials are characterized by complex thiophosphate microchemistry and structural disorder influencing the material performance. To overcome the length and time scale restrictions of ab initio calculations to industrially applicable LPS materials, we develop a near-universal machine-learning interatomic potential for the LPS material class. The trained Gaussian Approximation Potential (GAP) can likewise describe crystal and glassy materials and different P-S connectivities P [Formula: see text] S [Formula: see text]. We apply the GAP surrogate model to probe lithium ion conductivity and the influence of thiophosphate subunits on the latter. The materials studied are crystals (modifications of Li [Formula: see text] PS [Formula: see text] and Li [Formula: see text] P [Formula: see text] S [Formula: see text]), and glasses of the xLi [Formula: see text] S–(100 – x)P [Formula: see text] S [Formula: see text] type (x = 67, 70 and 75). The obtained material properties are well aligned with experimental findings and we underscore the role of anion dynamics on lithium ion conductivity in glassy LPS. The GAP surrogate approach allows for a variety of extensions and transferability to other SSEs. MDPI 2022-08-26 /pmc/articles/PMC9458117/ /pubmed/36079988 http://dx.doi.org/10.3390/nano12172950 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Staacke, Carsten G.
Huss, Tabea
Margraf, Johannes T.
Reuter, Karsten
Scheurer, Christoph
Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials
title Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials
title_full Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials
title_fullStr Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials
title_full_unstemmed Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials
title_short Tackling Structural Complexity in Li(2)S-P(2)S(5) Solid-State Electrolytes Using Machine Learning Potentials
title_sort tackling structural complexity in li(2)s-p(2)s(5) solid-state electrolytes using machine learning potentials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458117/
https://www.ncbi.nlm.nih.gov/pubmed/36079988
http://dx.doi.org/10.3390/nano12172950
work_keys_str_mv AT staackecarsteng tacklingstructuralcomplexityinli2sp2s5solidstateelectrolytesusingmachinelearningpotentials
AT husstabea tacklingstructuralcomplexityinli2sp2s5solidstateelectrolytesusingmachinelearningpotentials
AT margrafjohannest tacklingstructuralcomplexityinli2sp2s5solidstateelectrolytesusingmachinelearningpotentials
AT reuterkarsten tacklingstructuralcomplexityinli2sp2s5solidstateelectrolytesusingmachinelearningpotentials
AT scheurerchristoph tacklingstructuralcomplexityinli2sp2s5solidstateelectrolytesusingmachinelearningpotentials