Cargando…
Resistance of 3D-Printed Components, Test Specimens and Products to Work under Environmental Conditions—Review
The development of additive manufacturing methods known as “3D printing” started in the 1980s. In these methods, spatial models are created from a semi-finished product such as a powder, filament or liquid. The model is most often created in layers, which are created from the semi-finished product,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458170/ https://www.ncbi.nlm.nih.gov/pubmed/36079539 http://dx.doi.org/10.3390/ma15176162 |
Sumario: | The development of additive manufacturing methods known as “3D printing” started in the 1980s. In these methods, spatial models are created from a semi-finished product such as a powder, filament or liquid. The model is most often created in layers, which are created from the semi-finished product, which is most often subjected to thermal treatment or using light or ultraviolet rays. The technology of additive manufacturing has both advantages and disadvantages when compared to the traditionally used methods of processing thermoplastic materials, such as, for example, injection or extrusion. The most important advantages are low cost, flexibility and speed of manufacturing of elements with different spatial shapes. From the point of view of the user of the product, the most important disadvantages are the lower mechanical properties and lower resistance to environmental factors that occur during the use of the manufactured products. The purpose of this review is to present current information and a compilation of features in the field of research on the effects of the interactions of different types of environments on the mechanical properties of 3D-manufactured thermoplastic products. Changes in the structure and mechanical properties of the material under the influence of factors such as humidity, salt, temperature, UV rays, gasoline and the environment of the human body are presented. The presented article enables the effects of environmental conditions on common materials used in 3D printing technology to be collated in one place. |
---|