Cargando…
Experimental Investigation and Comparative Analysis of Aluminium Hybrid Metal Matrix Composites Reinforced with Silicon Nitride, Eggshell and Magnesium
In today’s scenario, composite materials play a vital role in automobile, aerospace, and defence sectors because of their higher strength, light weight and other mechanical properties. Aluminium alloy Al6082 is a medium strength alloy with good corrosion resistance properties; hence, it is used for...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458176/ https://www.ncbi.nlm.nih.gov/pubmed/36079478 http://dx.doi.org/10.3390/ma15176098 |
Sumario: | In today’s scenario, composite materials play a vital role in automobile, aerospace, and defence sectors because of their higher strength, light weight and other mechanical properties. Aluminium alloy Al6082 is a medium strength alloy with good corrosion resistance properties; hence, it is used for high-stress applications, bridges, cranes, etc. The present work focuses on comparing the mechanical properties of Al6082 and Al6082 with the addition of silicon nitride, magnesium, and bio waste of eggshells. Samples of Al6082 reinforced with 2% of silicon nitride (Si(3)N(4)), 5% of eggshell, and 1% magnesium reinforcements were prepared using the crucible casting process. Mechanical properties were evaluated through hardness test, tensile test and compressive tests, which varied with the additives of reinforcement materials. The results showed that the reinforced materials could increase mechanical properties. Further, it will be analysed by the machining parameters involved through the CNC turning process. Analysis of variance from optimisation technique shows a noteworthy increment of material removal rate (MRR) and significant decrement in surface roughness (Ra) and machining time compared to standard aluminium. Additionally, the analysis of mechanical testing has been predicted with the outcomes of stresses and displacements using the ANSYS platform. |
---|