Cargando…
DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors
We present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as differen...
Autores principales: | Barissi, Sandro, Sala, Alba, Wieczór, Miłosz, Battistini, Federica, Orozco, Modesto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458447/ https://www.ncbi.nlm.nih.gov/pubmed/36018808 http://dx.doi.org/10.1093/nar/gkac708 |
Ejemplares similares
-
How proteins bind to DNA: target discrimination and dynamic sequence search by the telomeric protein TRF1
por: Wieczór, Miłosz, et al.
Publicado: (2017) -
Correlated motions in DNA: beyond base-pair step models of DNA flexibility
por: López-Güell, Kim, et al.
Publicado: (2023) -
Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1
por: Sridhar, Akshay, et al.
Publicado: (2020) -
Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA
por: Dans, Pablo Daniel, et al.
Publicado: (2014) -
Molecular basis of Arginine and Lysine DNA sequence-dependent thermo-stability modulation
por: Martin, Benjamin, et al.
Publicado: (2022)