Cargando…
Five years calibrated observations from the University of Bonn X-band weather radar (BoXPol)
Polarimetric weather radars offer a wealth of new information compared to conventional technology, not only to enhance quantitative precipitation estimation, warnings, and short-term forecasts, but also to improve our understanding of precipitation generating processes and their representation in nu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458657/ https://www.ncbi.nlm.nih.gov/pubmed/36075918 http://dx.doi.org/10.1038/s41597-022-01656-0 |
Sumario: | Polarimetric weather radars offer a wealth of new information compared to conventional technology, not only to enhance quantitative precipitation estimation, warnings, and short-term forecasts, but also to improve our understanding of precipitation generating processes and their representation in numerical weather prediction models. To support such research opportunities, this paper describes an open-access dataset between 2014–2019 collected by the polarimetric Doppler X-band weather radar in Bonn (BoXPol), western Germany. To complement this dataset, the technical radar characteristics, scanning strategy and the best-practice for radar data processing are detailed. In addition, an investigation of radar calibration is presented. Reflectivity measurements from the Dual-frequency Precipitation Radar operating on the core satellite of the Global Precipitation Mission are compared to those of BoXPol to provide absolute calibration offsets with the dataset. The Relative Calibration Adjustment technique is applied to identify stable calibration periods. The absolute calibration of differential reflectivity is determined using the vertical scan and provided with the BoxPol dataset. |
---|