Cargando…

Structural basis for gating mechanism of the human sodium-potassium pump

P2-type ATPase sodium-potassium pumps (Na(+)/K(+)-ATPases) are ion-transporting enzymes that use ATP to transport Na(+) and K(+) on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite th...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Phong T., Deisl, Christine, Fine, Michael, Tippetts, Trevor S., Uchikawa, Emiko, Bai, Xiao-chen, Levine, Beth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458724/
https://www.ncbi.nlm.nih.gov/pubmed/36075933
http://dx.doi.org/10.1038/s41467-022-32990-x
_version_ 1784786352092479488
author Nguyen, Phong T.
Deisl, Christine
Fine, Michael
Tippetts, Trevor S.
Uchikawa, Emiko
Bai, Xiao-chen
Levine, Beth
author_facet Nguyen, Phong T.
Deisl, Christine
Fine, Michael
Tippetts, Trevor S.
Uchikawa, Emiko
Bai, Xiao-chen
Levine, Beth
author_sort Nguyen, Phong T.
collection PubMed
description P2-type ATPase sodium-potassium pumps (Na(+)/K(+)-ATPases) are ion-transporting enzymes that use ATP to transport Na(+) and K(+) on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite the available molecular architecture of the Na(+)/K(+)-ATPases, a complete molecular mechanism by which the Na(+) and K(+) ions access into and are released from the pump remains unknown. Here we report five cryo-electron microscopy (cryo-EM) structures of the human alpha3 Na(+)/K(+)-ATPase in its cytoplasmic side-open (E1), ATP-bound cytoplasmic side-open (E1•ATP), ADP-AlF(4)(−) trapped Na(+)-occluded (E1•P-ADP), BeF(3)(−) trapped exoplasmic side-open (E2P) and MgF(4)(2−) trapped K(+)-occluded (E2•P(i)) states. Our work reveals the atomically resolved structural detail of the cytoplasmic gating mechanism of the Na(+)/K(+)-ATPase.
format Online
Article
Text
id pubmed-9458724
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94587242022-09-10 Structural basis for gating mechanism of the human sodium-potassium pump Nguyen, Phong T. Deisl, Christine Fine, Michael Tippetts, Trevor S. Uchikawa, Emiko Bai, Xiao-chen Levine, Beth Nat Commun Article P2-type ATPase sodium-potassium pumps (Na(+)/K(+)-ATPases) are ion-transporting enzymes that use ATP to transport Na(+) and K(+) on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite the available molecular architecture of the Na(+)/K(+)-ATPases, a complete molecular mechanism by which the Na(+) and K(+) ions access into and are released from the pump remains unknown. Here we report five cryo-electron microscopy (cryo-EM) structures of the human alpha3 Na(+)/K(+)-ATPase in its cytoplasmic side-open (E1), ATP-bound cytoplasmic side-open (E1•ATP), ADP-AlF(4)(−) trapped Na(+)-occluded (E1•P-ADP), BeF(3)(−) trapped exoplasmic side-open (E2P) and MgF(4)(2−) trapped K(+)-occluded (E2•P(i)) states. Our work reveals the atomically resolved structural detail of the cytoplasmic gating mechanism of the Na(+)/K(+)-ATPase. Nature Publishing Group UK 2022-09-08 /pmc/articles/PMC9458724/ /pubmed/36075933 http://dx.doi.org/10.1038/s41467-022-32990-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Nguyen, Phong T.
Deisl, Christine
Fine, Michael
Tippetts, Trevor S.
Uchikawa, Emiko
Bai, Xiao-chen
Levine, Beth
Structural basis for gating mechanism of the human sodium-potassium pump
title Structural basis for gating mechanism of the human sodium-potassium pump
title_full Structural basis for gating mechanism of the human sodium-potassium pump
title_fullStr Structural basis for gating mechanism of the human sodium-potassium pump
title_full_unstemmed Structural basis for gating mechanism of the human sodium-potassium pump
title_short Structural basis for gating mechanism of the human sodium-potassium pump
title_sort structural basis for gating mechanism of the human sodium-potassium pump
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458724/
https://www.ncbi.nlm.nih.gov/pubmed/36075933
http://dx.doi.org/10.1038/s41467-022-32990-x
work_keys_str_mv AT nguyenphongt structuralbasisforgatingmechanismofthehumansodiumpotassiumpump
AT deislchristine structuralbasisforgatingmechanismofthehumansodiumpotassiumpump
AT finemichael structuralbasisforgatingmechanismofthehumansodiumpotassiumpump
AT tippettstrevors structuralbasisforgatingmechanismofthehumansodiumpotassiumpump
AT uchikawaemiko structuralbasisforgatingmechanismofthehumansodiumpotassiumpump
AT baixiaochen structuralbasisforgatingmechanismofthehumansodiumpotassiumpump
AT levinebeth structuralbasisforgatingmechanismofthehumansodiumpotassiumpump