Cargando…
Data-driven causal model discovery and personalized prediction in Alzheimer's disease
With the explosive growth of biomarker data in Alzheimer’s disease (AD) clinical trials, numerous mathematical models have been developed to characterize disease-relevant biomarker trajectories over time. While some of these models are purely empiric, others are causal, built upon various hypotheses...
Autores principales: | Zheng, Haoyang, Petrella, Jeffrey R., Doraiswamy, P. Murali, Lin, Guang, Hao, Wenrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458727/ https://www.ncbi.nlm.nih.gov/pubmed/36076010 http://dx.doi.org/10.1038/s41746-022-00632-7 |
Ejemplares similares
-
Computational Causal Modeling of the Dynamic Biomarker Cascade in Alzheimer's Disease
por: Petrella, Jeffrey R., et al.
Publicado: (2019) -
Optimal anti-amyloid-beta therapy for Alzheimer’s disease via a personalized mathematical model
por: Hao, Wenrui, et al.
Publicado: (2022) -
Science to Practice: Translating Automated Brain MRI Volumetry in Alzheimer’s Disease from Research to Routine Diagnostic Use in the Work-Up of Dementia
por: Rathakrishnan, Bharath Gopal, et al.
Publicado: (2014) -
Dissecting the Gene Dose-Effects of the APOE ε4 and ε2 Alleles on Hippocampal Volumes in Aging and Alzheimer’s Disease
por: Hostage, Christopher A., et al.
Publicado: (2013) -
Complex biomarker discovery in neuroimaging data: Finding a needle in a haystack()
por: Atluri, Gowtham, et al.
Publicado: (2013)