Cargando…
Neural Decoders Using Reinforcement Learning in Brain Machine Interfaces: A Technical Review
Creating flexible and robust brain machine interfaces (BMIs) is currently a popular topic of research that has been explored for decades in medicine, engineering, commercial, and machine-learning communities. In particular, the use of techniques using reinforcement learning (RL) has demonstrated imp...
Autores principales: | Girdler, Benton, Caldbeck, William, Bae, Jihye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459159/ https://www.ncbi.nlm.nih.gov/pubmed/36090185 http://dx.doi.org/10.3389/fnsys.2022.836778 |
Ejemplares similares
-
Unsupervised Adaptation of Brain-Machine Interface Decoders
por: Gürel, Tayfun, et al.
Publicado: (2012) -
Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface
por: Zhang, Peng, et al.
Publicado: (2020) -
Metric Learning in Freewill EEG Pre-Movement and Movement Intention Classification for Brain Machine Interfaces
por: Plucknett, William, et al.
Publicado: (2022) -
Error-Related Potentials in Reinforcement Learning-Based Brain-Machine Interfaces
por: Xavier Fidêncio, Aline, et al.
Publicado: (2022) -
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces
por: Li, Simin, et al.
Publicado: (2016)