Cargando…

The induced motion effect is a high-level visual phenomenon: Psychophysical evidence

Induced motion is the illusory motion of a target away from the direction of motion of the unattended background. If it is a result of assigning background motion to self-motion and judging target motion relative to the scene as suggested by the flow parsing hypothesis then the effect must be mediat...

Descripción completa

Detalles Bibliográficos
Autores principales: Falconbridge, Michael, Hewitt, Kassandra, Haille, Julia, Badcock, David R., Edwards, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459461/
https://www.ncbi.nlm.nih.gov/pubmed/36092511
http://dx.doi.org/10.1177/20416695221118111
Descripción
Sumario:Induced motion is the illusory motion of a target away from the direction of motion of the unattended background. If it is a result of assigning background motion to self-motion and judging target motion relative to the scene as suggested by the flow parsing hypothesis then the effect must be mediated in higher levels of the visual motion pathway where self-motion is assessed. We provide evidence for a high-level mechanism in two broad ways. Firstly, we show that the effect is insensitive to a set of low-level spatial aspects of the scene, namely, the spatial arrangement, the spatial frequency content and the orientation content of the background relative to the target. Secondly, we show that the effect is the same whether the target and background are composed of the same kind of local elements—one-dimensional (1D) or two-dimensional (2D)—or one is composed of one, and the other composed of the other. The latter finding is significant because 1D and 2D local elements are integrated by two different mechanisms so the induced motion effect is likely to be mediated in a visual motion processing area that follows the two separate integration mechanisms. Area medial superior temporal in monkeys and the equivalent in humans is suggested as a viable site. We present a simple flow-parsing-inspired model and demonstrate a good fit to our data and to data from a previous induced motion study.