Cargando…
Cardiovascular waveforms - can we extract more from routine signals?
Cardiovascular waveforms such as blood pressure, ECG and photoplethysmography (PPG), are routinely acquired by specialised monitoring devices. Such devices include bedside monitors, wearables and radiotelemetry which sample at very high fidelity, yet most of this numerical data is disregarded and fo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459482/ https://www.ncbi.nlm.nih.gov/pubmed/36092374 http://dx.doi.org/10.1177/20480040221121438 |
Sumario: | Cardiovascular waveforms such as blood pressure, ECG and photoplethysmography (PPG), are routinely acquired by specialised monitoring devices. Such devices include bedside monitors, wearables and radiotelemetry which sample at very high fidelity, yet most of this numerical data is disregarded and focus tends to reside on single point averages such as the maxima, minima, amplitude, rate and intervals. Whilst, these measures are undoubtedly of value, we may be missing important information by simplifying the complex waveform signal in this way. This Special Collection showcases recent advances in the appraisal of routine signals. Ultimately, such approaches and technologies may assist in improving the accuracy and sensitivity of detecting physiological change. This, in turn, may assist with identifying efficacy or safety signals for investigational new drugs or aidpatient diagnosis and management, supporting scientific and clinical decision making. |
---|