Cargando…
Deep Learning with Multimodal Integration for Predicting Recurrence in Patients with Non-Small Cell Lung Cancer
Due to high recurrence rates in patients with non-small cell lung cancer (NSCLC), medical professionals need extremely accurate diagnostic methods to prevent bleak prognoses. However, even the most commonly used diagnostic method, the TNM staging system, which describes the tumor-size, nodal-involve...
Autores principales: | Kim, Gihyeon, Moon, Sehwa, Choi, Jang-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459700/ https://www.ncbi.nlm.nih.gov/pubmed/36081053 http://dx.doi.org/10.3390/s22176594 |
Ejemplares similares
-
A multi-kernel and multi-scale learning based deep ensemble model for predicting recurrence of non-small cell lung cancer
por: Kim, Gihyeon, et al.
Publicado: (2023) -
Advancing diabetes prediction with a progressive self-transfer learning framework for discrete time series data
por: Lim, Heeryung, et al.
Publicado: (2023) -
Intra-person multi-task learning method for chronic-disease prediction
por: Kim, Gihyeon, et al.
Publicado: (2023) -
Lung Cancer Recurrence Risk Prediction through Integrated Deep Learning Evaluation
por: Huang, Peng, et al.
Publicado: (2022) -
Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning
por: Lai, Yu-Heng, et al.
Publicado: (2020)