Cargando…
Bacterial Surface Disturbances Affecting Cell Function during Exposure to Three-Compound Nanocomposites Based on Graphene Materials
Combating pathogenic microorganisms in an era of ever-increasing drug resistance is crucial. The aim of the study was to evaluate the antibacterial mechanism of three-compound nanocomposites that were based on graphene materials. To determine the nanomaterials’ physicochemical properties, an analysi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459733/ https://www.ncbi.nlm.nih.gov/pubmed/36080095 http://dx.doi.org/10.3390/nano12173058 |
Sumario: | Combating pathogenic microorganisms in an era of ever-increasing drug resistance is crucial. The aim of the study was to evaluate the antibacterial mechanism of three-compound nanocomposites that were based on graphene materials. To determine the nanomaterials’ physicochemical properties, an analysis of the mean hydrodynamic diameter and zeta potential, transmission electron microscope (TEM) visualization and an FT-IR analysis were performed. The nanocomposites’ activity toward bacteria species was defined by viability, colony forming units, conductivity and surface charge, cell wall integrity, ATP concentration, and intracellular pH. To ensure the safe usage of nanocomposites, the presence of cytokines was also analyzed. Both the graphene and graphene oxide (GO) nanocomposites exhibited a high antibacterial effect toward all bacteria species (Enterobacter cloacae, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus), as well as exceeded values obtained from exposure to single nanoparticles. Nanocomposites caused the biggest membrane damage, along with ATP depletion. Nanocomposites that were based on GO resulted in lower toxicity to the cell line. In view of the many aspects that must be considered when investigating such complex structures as are three-component nanocomposites, studies of their mechanism of action are crucial to their potential antibacterial use. |
---|