Cargando…
Transportation Mode Detection Using Temporal Convolutional Networks Based on Sensors Integrated into Smartphones
In recent years, with the development of science and technology, people have more and more choices for daily travel. However, assisting with various mobile intelligent services by transportation mode detection has become more urgent for the refinement of human activity identification. Although much...
Autores principales: | Wang, Pu, Jiang, Yongguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459749/ https://www.ncbi.nlm.nih.gov/pubmed/36081169 http://dx.doi.org/10.3390/s22176712 |
Ejemplares similares
-
DFTrans: Dual Frequency Temporal Attention Mechanism-Based Transportation Mode Detection
por: Wang, Pu, et al.
Publicado: (2022) -
Transportation Modes Classification Using Sensors on Smartphones
por: Fang, Shih-Hau, et al.
Publicado: (2016) -
Research on Transportation Mode Recognition Based on Multi-Head Attention Temporal Convolutional Network
por: Cheng, Shuyu, et al.
Publicado: (2023) -
Transportation Mode Detection Combining CNN and Vision Transformer with Sensors Recalibration Using Smartphone Built-In Sensors
por: Tian, Ye, et al.
Publicado: (2022) -
Skeleton-Based Fall Detection with Multiple Inertial Sensors Using Spatial-Temporal Graph Convolutional Networks
por: Yan, Jianjun, et al.
Publicado: (2023)