Cargando…

Measurement and Analysis of Shock Wave Pressure in Moving Charge and Stationary Charge Explosions

Shock wave pressure is one of the most important parameters in an explosion. However, there have been few experimental and analytical investigations of moving charge explosions. In this article, we present an experimental method to measure the shock wave pressure from a moving charge explosion. Test...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Xuejiao, Kong, Deren, Shi, Yucheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459780/
https://www.ncbi.nlm.nih.gov/pubmed/36081039
http://dx.doi.org/10.3390/s22176582
Descripción
Sumario:Shock wave pressure is one of the most important parameters in an explosion. However, there have been few experimental and analytical investigations of moving charge explosions. In this article, we present an experimental method to measure the shock wave pressure from a moving charge explosion. Tests of stationary charges and moving charges with speeds of 580 m/s, 703 m/s and 717 m/s were carried out. The shock wave pressure curves and parameters at different measurement points were obtained and analyzed. The theoretical calculation of the shock wave overpressure was studied and compared with the experimental result. The differences between the stationary charge and moving charge explosions were investigated. The results showed that the shock wave pressure distribution of a moving charge had strong directionality. The shock wave pressure parameters (including overpressure, arrival time, duration and impulse) were influenced by the charge’s moving velocity, direction angle and distance from the blast point. The shock wave overpressure value was greater than that of a stationary charge explosion at angles between 0° and 90°. The correlation model based on the velocity vector superposition method could describe the relationship of overpressure between the stationary charge and moving charge explosions.