Cargando…

Water Extract of Piper longum Linn Ameliorates Ovariectomy-Induced Bone Loss by Inhibiting Osteoclast Differentiation

Piper longum linn has traditionally been used for the treatment of respiratory and gastrointestinal disorders in India. Although various pharmacological effects of P. longum have been studied, its effects on bone have not been clearly elucidated. Therefore, this study examined the inhibitory effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Dong Ryun, Yang, Hyun, Kim, Seong Cheol, Hwang, Youn-Hwan, Ha, Hyunil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459790/
https://www.ncbi.nlm.nih.gov/pubmed/36079923
http://dx.doi.org/10.3390/nu14173667
Descripción
Sumario:Piper longum linn has traditionally been used for the treatment of respiratory and gastrointestinal disorders in India. Although various pharmacological effects of P. longum have been studied, its effects on bone have not been clearly elucidated. Therefore, this study examined the inhibitory effect of the water extract of P. longum Linn (WEPL) on osteoclast differentiation. WEPL directly affected the osteoclast precursors and suppressed osteoclast differentiation in vitro. In addition, the expression levels of c-Fos and nuclear factor of activated T cells 1, a critical transcription factor for osteoclastogenesis, were significantly downregulated by WEPL via the suppression of the receptor activator of nuclear factor (NF)-κB ligand-induced mitogen-activated protein kinase and NF-κB signaling pathways. Consistent with the in vitro results, oral administration of WEPL (100 and 300 mpk) to ovariectomized mice for six weeks relieved the OVX-induced bone loss. We also identified phytochemicals in WEPL that are reported to exert inhibitory effects on osteoclastogenesis and/or bone loss. Collectively, the findings of our study indicate that WEPL has an anti-osteoporotic effect on OVX-induced bone loss by diminishing osteoclast differentiation, suggesting that it may be useful to treat several bone diseases caused by excessive bone resorption.