Cargando…
Development and Calibration of a Low-Cost, Piezoelectric Rainfall Sensor through Machine Learning
In situ measurements of precipitation are typically obtained by tipping bucket or weighing rain gauges or by disdrometers using different measurement principles. One of the most critical aspects of their operational use is the calibration, which requires the characterization of instrument responses...
Autores principales: | Antonini, Andrea, Melani, Samantha, Mazza, Alessandro, Baldini, Luca, Adirosi, Elisa, Ortolani, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459799/ https://www.ncbi.nlm.nih.gov/pubmed/36081097 http://dx.doi.org/10.3390/s22176638 |
Ejemplares similares
-
Real-Time Rain Rate Evaluation via Satellite Downlink Signal Attenuation Measurement
por: Giannetti, Filippo, et al.
Publicado: (2017) -
Machine Learning-Based Calibration of Low-Cost Air Temperature Sensors Using Environmental Data
por: Yamamoto, Kyosuke, et al.
Publicado: (2017) -
Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors
por: Castro, Bruno, et al.
Publicado: (2016) -
Effective Calibration of Low-Cost Soil Water Content Sensors
por: Bogena, Heye Reemt, et al.
Publicado: (2017) -
Seasonal Influence on the Performance of Low-Cost NO(2) Sensor Calibrations
por: van Ratingen, Sjoerd, et al.
Publicado: (2021)