Cargando…
Comparison of Deep Learning and Deterministic Algorithms for Control Modeling
Controlling nonlinear dynamics arises in various engineering fields. We present efforts to model the forced van der Pol system control using physics-informed neural networks (PINN) compared to benchmark methods, including idealized nonlinear feedforward (FF) control, linearized feedback control (FB)...
Autores principales: | Zhai, Hanfeng, Sands, Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459824/ https://www.ncbi.nlm.nih.gov/pubmed/36080819 http://dx.doi.org/10.3390/s22176362 |
Ejemplares similares
-
Microsatellite Uncertainty Control Using Deterministic Artificial Intelligence
por: Wilt, Evan, et al.
Publicado: (2022) -
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
por: Shi, Haibo, et al.
Publicado: (2018) -
An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms
por: Dong, Ruyi, et al.
Publicado: (2023) -
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
por: Zhang, Haifei, et al.
Publicado: (2022) -
A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients
por: Lin, Tianlai, et al.
Publicado: (2023)