Cargando…
Reinforced Structure Effect on Thermo-Oxidative Stability of Polymer-Matrix Composites: 2-D Plain Woven Composites and 2.5-D Angle-Interlock Woven Composites
The thermo-oxidative stability of carbon fiber polymer matrix composites with different integral reinforced structures was investigated experimentally and numerically. Specimens of 2-D plain woven composites and 2.5-D angle-interlock woven composites were isothermally aged at 180 °C in hot air for v...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459825/ https://www.ncbi.nlm.nih.gov/pubmed/36080533 http://dx.doi.org/10.3390/polym14173454 |
Sumario: | The thermo-oxidative stability of carbon fiber polymer matrix composites with different integral reinforced structures was investigated experimentally and numerically. Specimens of 2-D plain woven composites and 2.5-D angle-interlock woven composites were isothermally aged at 180 °C in hot air for various durations up to 32 days. The thermal oxidative ageing led to the degradation of the matrix and the fiber/matrix interface. The degradation mechanisms of the matrix were examined by ATR-FTIR and thermal analysis. The interface cracks caused by thermal oxidative ageing were sensitive to the reinforced structure. The thermo-oxidative stability of the two composites was numerically compared in terms of matrix shrinking and crack evolution and then experimentally validated by interlaminar shear tests. |
---|