Cargando…
Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose
OBJECTIVE: Imaged scan length (z-axis coverage) is a simple parameter that can reduce CT dose without compromising image quality. In CT coronary angiography (CTCA), z-axis coverage may be planned using non-contrast calcium score scan (CaCS) to identify the relevant coronary anatomy. However, standar...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459860/ https://www.ncbi.nlm.nih.gov/pubmed/36105418 http://dx.doi.org/10.1259/bjro.20210056 |
_version_ | 1784786610284396544 |
---|---|
author | Duerden, Laura O’Brien, Helen Doshi, Susan Charters, Pia King, Laurence Hudson, Benjamin. J Rodrigues, Jonathan Carl Luis |
author_facet | Duerden, Laura O’Brien, Helen Doshi, Susan Charters, Pia King, Laurence Hudson, Benjamin. J Rodrigues, Jonathan Carl Luis |
author_sort | Duerden, Laura |
collection | PubMed |
description | OBJECTIVE: Imaged scan length (z-axis coverage) is a simple parameter that can reduce CT dose without compromising image quality. In CT coronary angiography (CTCA), z-axis coverage may be planned using non-contrast calcium score scan (CaCS) to identify the relevant coronary anatomy. However, standardised Agatston CaCS is acquired at 120 kV which adds a relatively high contribution to total study dose and CaCS is no longer routinely recommended in UK guidelines. We evaluate an ultra-low dose unenhanced planning scan on CTCA scan length and effective radiation dose. METHODS: An ultra-low dose tin filter (Sn-filter) planning scan (100 kVp, maximum iterative reconstruction) was performed and used to plan the z-axis coverage on 48 consecutive CTCAs (62% men, 62 ± 13 years) compared with 47 CTCA planned using a localiser alone (46% men, 59 ± 12 years) between May and June 2019. Excess scanning beyond the ideal scan length was calculated for both groups. Estimations of radiation dose were also compared between the two groups. RESULTS: Addition of an ultra-low dose unenhanced planning scan to CTCA protocol was associated with reduction in overscanning with no impact on image quality. There was no significant difference in total study effective dose with the addition of the planning scan, which had an average dose–length product of 3 mGy.cm. (total study dose: Protocol A 2.1 mSv vs Protocol B 2.2 mSv, p = 0.92). CONCLUSION: An ultra-low dose unenhanced planning scan facilitates optimal scan length for the diagnostic CTCA, reducing overscanning and preventing incomplete cardiac imaging with no significant dose penalty or impact on image quality. ADVANCES IN KNOWLEDGE: An ultra-low dose CTCA planning is feasible and effective at optimising scan length. |
format | Online Article Text |
id | pubmed-9459860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The British Institute of Radiology. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94598602022-09-13 Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose Duerden, Laura O’Brien, Helen Doshi, Susan Charters, Pia King, Laurence Hudson, Benjamin. J Rodrigues, Jonathan Carl Luis BJR Open Original Research OBJECTIVE: Imaged scan length (z-axis coverage) is a simple parameter that can reduce CT dose without compromising image quality. In CT coronary angiography (CTCA), z-axis coverage may be planned using non-contrast calcium score scan (CaCS) to identify the relevant coronary anatomy. However, standardised Agatston CaCS is acquired at 120 kV which adds a relatively high contribution to total study dose and CaCS is no longer routinely recommended in UK guidelines. We evaluate an ultra-low dose unenhanced planning scan on CTCA scan length and effective radiation dose. METHODS: An ultra-low dose tin filter (Sn-filter) planning scan (100 kVp, maximum iterative reconstruction) was performed and used to plan the z-axis coverage on 48 consecutive CTCAs (62% men, 62 ± 13 years) compared with 47 CTCA planned using a localiser alone (46% men, 59 ± 12 years) between May and June 2019. Excess scanning beyond the ideal scan length was calculated for both groups. Estimations of radiation dose were also compared between the two groups. RESULTS: Addition of an ultra-low dose unenhanced planning scan to CTCA protocol was associated with reduction in overscanning with no impact on image quality. There was no significant difference in total study effective dose with the addition of the planning scan, which had an average dose–length product of 3 mGy.cm. (total study dose: Protocol A 2.1 mSv vs Protocol B 2.2 mSv, p = 0.92). CONCLUSION: An ultra-low dose unenhanced planning scan facilitates optimal scan length for the diagnostic CTCA, reducing overscanning and preventing incomplete cardiac imaging with no significant dose penalty or impact on image quality. ADVANCES IN KNOWLEDGE: An ultra-low dose CTCA planning is feasible and effective at optimising scan length. The British Institute of Radiology. 2023-01-03 /pmc/articles/PMC9459860/ /pubmed/36105418 http://dx.doi.org/10.1259/bjro.20210056 Text en © 2022 The Authors. Published by the British Institute of Radiology https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Original Research Duerden, Laura O’Brien, Helen Doshi, Susan Charters, Pia King, Laurence Hudson, Benjamin. J Rodrigues, Jonathan Carl Luis Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose |
title | Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose |
title_full | Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose |
title_fullStr | Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose |
title_full_unstemmed | Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose |
title_short | Impact of an ultra-low dose unenhanced planning scan on CT coronary angiography scan length and effective radiation dose |
title_sort | impact of an ultra-low dose unenhanced planning scan on ct coronary angiography scan length and effective radiation dose |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459860/ https://www.ncbi.nlm.nih.gov/pubmed/36105418 http://dx.doi.org/10.1259/bjro.20210056 |
work_keys_str_mv | AT duerdenlaura impactofanultralowdoseunenhancedplanningscanonctcoronaryangiographyscanlengthandeffectiveradiationdose AT obrienhelen impactofanultralowdoseunenhancedplanningscanonctcoronaryangiographyscanlengthandeffectiveradiationdose AT doshisusan impactofanultralowdoseunenhancedplanningscanonctcoronaryangiographyscanlengthandeffectiveradiationdose AT charterspia impactofanultralowdoseunenhancedplanningscanonctcoronaryangiographyscanlengthandeffectiveradiationdose AT kinglaurence impactofanultralowdoseunenhancedplanningscanonctcoronaryangiographyscanlengthandeffectiveradiationdose AT hudsonbenjaminj impactofanultralowdoseunenhancedplanningscanonctcoronaryangiographyscanlengthandeffectiveradiationdose AT rodriguesjonathancarlluis impactofanultralowdoseunenhancedplanningscanonctcoronaryangiographyscanlengthandeffectiveradiationdose |