Cargando…
CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment †
Red palm weevil (RPW) is a harmful pest that destroys many date, coconut, and oil palm plantations worldwide. It is not difficult to apply curative methods to trees infested with RPW; however, the early detection of RPW remains a major challenge, especially on large farms. In a controlled environmen...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459888/ https://www.ncbi.nlm.nih.gov/pubmed/36080949 http://dx.doi.org/10.3390/s22176491 |
_version_ | 1784786617258475520 |
---|---|
author | Ashry, Islam Wang, Biwei Mao, Yuan Sait, Mohammed Guo, Yujian Al-Fehaid, Yousef Al-Shawaf, Abdulmoneim Ng, Tien Khee Ooi, Boon S. |
author_facet | Ashry, Islam Wang, Biwei Mao, Yuan Sait, Mohammed Guo, Yujian Al-Fehaid, Yousef Al-Shawaf, Abdulmoneim Ng, Tien Khee Ooi, Boon S. |
author_sort | Ashry, Islam |
collection | PubMed |
description | Red palm weevil (RPW) is a harmful pest that destroys many date, coconut, and oil palm plantations worldwide. It is not difficult to apply curative methods to trees infested with RPW; however, the early detection of RPW remains a major challenge, especially on large farms. In a controlled environment and an outdoor farm, we report on the integration of optical fiber distributed acoustic sensing (DAS) and machine learning (ML) for the early detection of true weevil larvae less than three weeks old. Specifically, temporal and spectral data recorded with the DAS system and processed by applying a 100–800 Hz filter are used to train convolutional neural network (CNN) models, which distinguish between “infested” and “healthy” signals with a classification accuracy of ∼97%. In addition, a strict ML-based classification approach is introduced to improve the false alarm performance metric of the system by ∼20%. In a controlled environment experiment, we find that the highest infestation alarm count of infested and healthy trees to be 1131 and 22, respectively, highlighting our system’s ability to distinguish between the infested and healthy trees. On an outdoor farm, in contrast, the acoustic noise produced by wind is a major source of false alarm generation in our system. The best performance of our sensor is obtained when wind speeds are less than 9 mph. In a representative experiment, when wind speeds are less than 9 mph outdoor, the highest infestation alarm count of infested and healthy trees are recorded to be 1622 and 94, respectively. |
format | Online Article Text |
id | pubmed-9459888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94598882022-09-10 CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment † Ashry, Islam Wang, Biwei Mao, Yuan Sait, Mohammed Guo, Yujian Al-Fehaid, Yousef Al-Shawaf, Abdulmoneim Ng, Tien Khee Ooi, Boon S. Sensors (Basel) Article Red palm weevil (RPW) is a harmful pest that destroys many date, coconut, and oil palm plantations worldwide. It is not difficult to apply curative methods to trees infested with RPW; however, the early detection of RPW remains a major challenge, especially on large farms. In a controlled environment and an outdoor farm, we report on the integration of optical fiber distributed acoustic sensing (DAS) and machine learning (ML) for the early detection of true weevil larvae less than three weeks old. Specifically, temporal and spectral data recorded with the DAS system and processed by applying a 100–800 Hz filter are used to train convolutional neural network (CNN) models, which distinguish between “infested” and “healthy” signals with a classification accuracy of ∼97%. In addition, a strict ML-based classification approach is introduced to improve the false alarm performance metric of the system by ∼20%. In a controlled environment experiment, we find that the highest infestation alarm count of infested and healthy trees to be 1131 and 22, respectively, highlighting our system’s ability to distinguish between the infested and healthy trees. On an outdoor farm, in contrast, the acoustic noise produced by wind is a major source of false alarm generation in our system. The best performance of our sensor is obtained when wind speeds are less than 9 mph. In a representative experiment, when wind speeds are less than 9 mph outdoor, the highest infestation alarm count of infested and healthy trees are recorded to be 1622 and 94, respectively. MDPI 2022-08-29 /pmc/articles/PMC9459888/ /pubmed/36080949 http://dx.doi.org/10.3390/s22176491 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ashry, Islam Wang, Biwei Mao, Yuan Sait, Mohammed Guo, Yujian Al-Fehaid, Yousef Al-Shawaf, Abdulmoneim Ng, Tien Khee Ooi, Boon S. CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment † |
title | CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment † |
title_full | CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment † |
title_fullStr | CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment † |
title_full_unstemmed | CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment † |
title_short | CNN–Aided Optical Fiber Distributed Acoustic Sensing for Early Detection of Red Palm Weevil: A Field Experiment † |
title_sort | cnn–aided optical fiber distributed acoustic sensing for early detection of red palm weevil: a field experiment † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459888/ https://www.ncbi.nlm.nih.gov/pubmed/36080949 http://dx.doi.org/10.3390/s22176491 |
work_keys_str_mv | AT ashryislam cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT wangbiwei cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT maoyuan cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT saitmohammed cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT guoyujian cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT alfehaidyousef cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT alshawafabdulmoneim cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT ngtienkhee cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment AT ooiboons cnnaidedopticalfiberdistributedacousticsensingforearlydetectionofredpalmweevilafieldexperiment |