Cargando…
Monocular Depth Estimation: Lightweight Convolutional and Matrix Capsule Feature-Fusion Network
This paper reports a study that aims to solve the problem of the weak adaptability to angle transformation of current monocular depth estimation algorithms. These algorithms are based on convolutional neural networks (CNNs) but produce results lacking in estimation accuracy and robustness. The paper...
Autores principales: | Wang, Yinchu, Zhu, Haijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459913/ https://www.ncbi.nlm.nih.gov/pubmed/36080801 http://dx.doi.org/10.3390/s22176344 |
Ejemplares similares
-
RT-ViT: Real-Time Monocular Depth Estimation Using Lightweight Vision Transformers
por: Ibrahem, Hatem, et al.
Publicado: (2022) -
GFI-Net: Global Feature Interaction Network for Monocular Depth Estimation
por: Zhang, Cong, et al.
Publicado: (2023) -
Deep Monocular Depth Estimation Based on Content and Contextual Features
por: Abdulwahab, Saddam, et al.
Publicado: (2023) -
SFA-MDEN: Semantic-Feature-Aided Monocular Depth Estimation Network Using Dual Branches
por: Wang, Rui, et al.
Publicado: (2021) -
Photometric Stereo-Based Depth Map Reconstruction for Monocular Capsule Endoscopy
por: Hao, Yang, et al.
Publicado: (2020)