Cargando…

Design of FOPID Controller for Pneumatic Control Valve Based on Improved BBO Algorithm

Aiming at the problems of nonlinearity and inaccuracy in the model of the pneumatic control valve position in the industrial control process, a valve position control method based on a fractional-order PID controller is proposed. The working principle of the pneumatic control valve is analyzed, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Min, Xu, Zihao, Zang, Zhaoyu, Dong, Xueping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459927/
https://www.ncbi.nlm.nih.gov/pubmed/36081164
http://dx.doi.org/10.3390/s22176706
Descripción
Sumario:Aiming at the problems of nonlinearity and inaccuracy in the model of the pneumatic control valve position in the industrial control process, a valve position control method based on a fractional-order PID controller is proposed. The working principle of the pneumatic control valve is analyzed, and its mathematical model is established. In order to improve the accuracy of the model, an improved biogeography-based optimization algorithm is proposed to tune the parameters of the fractional-order PID controller in view of the wide range and high complexity of the fractional-order PID controller. The initialization of the chaotic graph, the adjustment of the migration model, and the improvement of the migration operator and the mutation operator are introduced to improve the algorithm optimization ability, which is used for the model identification of the control valve control system. The simulation and experimental results clearly show that, compared with the integer-order PID controller, the designed fractional-order PID controller has faster response speed and control accuracy, which can better meet the requirements of pneumatic control valve position control.