Cargando…
XGBLoc: XGBoost-Based Indoor Localization in Multi-Building Multi-Floor Environments
Location-based indoor applications with high quality of services require a reliable, accurate, and low-cost position prediction for target device(s). The widespread availability of WiFi received signal strength indicator (RSSI) makes it a suitable candidate for indoor localization. However, traditio...
Autores principales: | Singh, Navneet, Choe, Sangho, Punmiya, Rajiv, Kaur, Navneesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459943/ https://www.ncbi.nlm.nih.gov/pubmed/36081089 http://dx.doi.org/10.3390/s22176629 |
Ejemplares similares
-
Multi-Floor Indoor Localization Based on Multi-Modal Sensors
por: Zhou, Guangbing, et al.
Publicado: (2022) -
Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments
por: Alshami, Iyad Husni, et al.
Publicado: (2017) -
An Indoor Fingerprint Positioning Algorithm Based on WKNN and Improved XGBoost
por: Lu, Haizhao, et al.
Publicado: (2023) -
Multi-Floor Indoor Pedestrian Dead Reckoning with a Backtracking Particle Filter and Viterbi-Based Floor Number Detection
por: De Cock, Cedric, et al.
Publicado: (2021) -
Multi-sensor, multi-device smart building indoor environmental dataset
por: Erol, Ufuk, et al.
Publicado: (2023)