Cargando…
Machine Learning Approach to Predict Physical Properties of Polypropylene Composites: Application of MLR, DNN, and Random Forest to Industrial Data
Manufacturing polypropylene (PP) composites to meet customers’ needs is difficult, time-consuming, and costly, owing to the ever-increasing diversity and complexity of the corresponding specifications and the trial-and-error method currently used to satisfy the required physical properties. To addre...
Autores principales: | Joo, Chonghyo, Park, Hyundo, Kwon, Hyukwon, Lim, Jongkoo, Shin, Eunchul, Cho, Hyungtae, Kim, Junghwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459971/ https://www.ncbi.nlm.nih.gov/pubmed/36080575 http://dx.doi.org/10.3390/polym14173500 |
Ejemplares similares
-
Machine Learning with R, the tidyverse, and mlr
por: Rhys, Hefin
Publicado: (2020) -
mlr3proba: an R package for machine learning in survival analysis
por: Sonabend, Raphael, et al.
Publicado: (2021) -
DNN based reliability evaluation for telemedicine data
por: Shin, Dong Ah, et al.
Publicado: (2022) -
DNN Intellectual Property Extraction Using Composite Data
por: Mosafi, Itay, et al.
Publicado: (2022) -
Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins
por: Dziga, Dariusz, et al.
Publicado: (2016)