Cargando…
MEEMD Decomposition–Prediction–Reconstruction Model of Precipitation Time Series
To address the problem of low prediction accuracy of precipitation time series data, an improved overall mean empirical modal decomposition–prediction–reconstruction model (MDPRM) is constructed in this paper. First, the non-stationary precipitation time series are decomposed into multiple decomposi...
Autores principales: | Wang, Yongtao, Liu, Jian, Li, Rong, Suo, Xinyu, Lu, Enhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460057/ https://www.ncbi.nlm.nih.gov/pubmed/36080874 http://dx.doi.org/10.3390/s22176415 |
Ejemplares similares
-
Carbon price prediction based on multi-factor MEEMD-LSTM model
por: Min, Yang, et al.
Publicado: (2022) -
Application of PSO-BPNN-PID Controller in Nutrient Solution EC Precise Control System: Applied Research
por: Wang, Yongtao, et al.
Publicado: (2022) -
Stock Index Prediction Based on Time Series Decomposition and Hybrid Model
por: Lv, Pin, et al.
Publicado: (2022) -
Deep Prediction Model Based on Dual Decomposition with Entropy and Frequency Statistics for Nonstationary Time Series
por: Shi, Zhigang, et al.
Publicado: (2022) -
Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition
por: Liu, Xin, et al.
Publicado: (2021)