Cargando…
Multiple Enhanced Sparse Representation via IACMDSR Model for Bearing Compound Fault Diagnosis
For the sake of addressing the issue of extracting multiple features embedded in a noise-heavy vibration signal for bearing compound fault diagnosis, a novel model based on improved adaptive chirp mode decomposition (IACMD) and sparse representation, namely IACMDSR, is developed in this paper. First...
Autores principales: | Zhang, Long, Zhao, Lijuan, Wang, Chaobing, Xiao, Qian, Liu, Haoyang, Zhang, Hao, Hu, Yanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460066/ https://www.ncbi.nlm.nih.gov/pubmed/36080790 http://dx.doi.org/10.3390/s22176330 |
Ejemplares similares
-
Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis
por: Zhang, Long, et al.
Publicado: (2022) -
Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
por: Tang, Jiahui, et al.
Publicado: (2022) -
Simultaneously Low Rank and Group Sparse Decomposition for Rolling Bearing Fault Diagnosis
por: Zheng, Kai, et al.
Publicado: (2020) -
Blind Fault Extraction of Rolling-Bearing Compound Fault Based on Improved Morphological Filtering and Sparse Component Analysis
por: Xie, Wensong, et al.
Publicado: (2022) -
Diagnosis of Compound Fault Using Sparsity Promoted-Based Sparse Component Analysis
por: Hao, Yansong, et al.
Publicado: (2017)