Cargando…

Automated Detection of Atypical Aviation Obstacles from UAV Images Using a YOLO Algorithm

Unmanned Aerial Vehicles (UAVs) are able to guarantee very high spatial and temporal resolution and up-to-date information in order to ensure safety in the direct vicinity of the airport. The current dynamic growth of investment areas in large agglomerations, especially in the neighbourhood of airpo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lalak, Marta, Wierzbicki, Damian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460069/
https://www.ncbi.nlm.nih.gov/pubmed/36081077
http://dx.doi.org/10.3390/s22176611
Descripción
Sumario:Unmanned Aerial Vehicles (UAVs) are able to guarantee very high spatial and temporal resolution and up-to-date information in order to ensure safety in the direct vicinity of the airport. The current dynamic growth of investment areas in large agglomerations, especially in the neighbourhood of airports, leads to the emergence of objects that may constitute a threat for air traffic. In order to ensure that the obtained spatial data are accurate, it is necessary to understand the detection of atypical aviation obstacles by means of their identification and classification. Quite often, a common feature of atypical aviation obstacles is their elongated shape and irregular cross-section. These factors pose a challenge for modern object detection techniques when the processes used to determine their height are automated. This paper analyses the possibilities for the automated detection of atypical aviation obstacles based on the YOLO algorithm and presents an analysis of the accuracy of the determination of their height based on data obtained from UAV.