Cargando…
Automated Detection of Atypical Aviation Obstacles from UAV Images Using a YOLO Algorithm
Unmanned Aerial Vehicles (UAVs) are able to guarantee very high spatial and temporal resolution and up-to-date information in order to ensure safety in the direct vicinity of the airport. The current dynamic growth of investment areas in large agglomerations, especially in the neighbourhood of airpo...
Autores principales: | Lalak, Marta, Wierzbicki, Damian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460069/ https://www.ncbi.nlm.nih.gov/pubmed/36081077 http://dx.doi.org/10.3390/s22176611 |
Ejemplares similares
-
UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective
por: Liu, Mingjie, et al.
Publicado: (2020) -
Multi-Camera Imaging System for UAV Photogrammetry
por: Wierzbicki, Damian
Publicado: (2018) -
YOLO-SASE: An Improved YOLO Algorithm for the Small Targets Detection in Complex Backgrounds
por: Zhou, Xiao, et al.
Publicado: (2022) -
Obstacle Detection and Avoidance System Based on Monocular Camera and Size Expansion Algorithm for UAVs
por: Al-Kaff, Abdulla, et al.
Publicado: (2017) -
Enhancing UAV Visual Landing Recognition with YOLO’s Object Detection by Onboard Edge Computing
por: Ma, Ming-You, et al.
Publicado: (2023)