Cargando…
A Fast and Easy Probe Based on CMC/Eu (Ⅲ) Nanocomposites to Detect Acrylamide in Different Food Simulants Migrating from Food-Contacting Paper Materials
The residual acrylamide in food paper packaging can be transferred into water and food, which will cause harmful effects on human beings. In this paper, a rapid and easily available fluorescent probe based on carboxymethyl cellulose (CMC)/Eu (Ⅲ) nanocomposites was designed to detect the residue acry...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460073/ https://www.ncbi.nlm.nih.gov/pubmed/36080657 http://dx.doi.org/10.3390/polym14173578 |
Sumario: | The residual acrylamide in food paper packaging can be transferred into water and food, which will cause harmful effects on human beings. In this paper, a rapid and easily available fluorescent probe based on carboxymethyl cellulose (CMC)/Eu (Ⅲ) nanocomposites was designed to detect the residue acrylamide with high sensibility. The probe could respond in 1 min. The concentration of acrylamide was linearly correlated to the fluorescence intensity of the probe at the emission wavelength of 615 nm in the concentration range of 0.1–100 μmol/L. The limit of detection (LOD) of the probe was 0.085 μg/L, which is lower than the guideline value of the European Union, the U.S. EPA, and the WHO. An experiment was performed to simulate the acrylamide migrating from food-contacting paper materials to different foods, including waterborne food, alcohol beverage, acidic food, and greasy food. The recoveries and RSDs of acrylamide in all samples indicated that the CMC/Eu (Ⅲ) fluorescent probe was efficient for acrylamide detection. The possible mechanism of the probe for acrylamide detection involved both dynamically quenching and static quenching by forming of non-fluorescent substances. |
---|