Cargando…

Draft Genome Sequence of Priestia sp. Strain TSO9, a Plant Growth-Promoting Bacterium Associated with Wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico

Strain TSO9 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum) located in the Yaqui, Valley, Mexico. Here, the genome of this strain was sequenced, obtaining a total of 5,248,515 bp; 38.0% G + C content; 1,186,514 bp N50; and 2 L50. Based on the 16S rRNA gene sequencin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortega-Urquieta, Maria Edith, Valenzuela-Ruíz, Valeria, Mitra, Debasis, Hyder, Sajjad, Elsheery, Nabil I., Kumar Das Mohapatra, Pradeep, Parra-Cota, Fannie Isela, de los Santos-Villalobos, Sergio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460074/
https://www.ncbi.nlm.nih.gov/pubmed/36079613
http://dx.doi.org/10.3390/plants11172231
Descripción
Sumario:Strain TSO9 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum) located in the Yaqui, Valley, Mexico. Here, the genome of this strain was sequenced, obtaining a total of 5,248,515 bp; 38.0% G + C content; 1,186,514 bp N50; and 2 L50. Based on the 16S rRNA gene sequencing, strain TSO9 was affiliated with the genus Priestia. The genome annotation of Priestia sp. TSO9 contains a total of 147 RNAs, 128 tRNAs, 1 tmRNA, and 5512 coding DNA sequences (CDS) distributed into 332 subsystems, where CDS associated with agricultural purposes were identified, such as (i) virulence, disease, and defense (57 CDS) (i.e., resistance to antibiotics and toxic compounds (34 CDS), invasion and intracellular resistance (12 CDS), and bacteriocins and ribosomally synthesized antibacterial peptides (10 CDS)), (ii) iron acquisition and metabolism (36 CDS), and (iii) secondary metabolism (4 CDS), i.e., auxin biosynthesis. In addition, subsystems related to the viability of an active ingredient for agricultural bioproducts were identified, such as (i) stress response (65 CDS). These genomic traits are correlated with the metabolic background of this strain, and its positive effects on wheat growth regulation reported in this work. Thus, further investigations of Priestia sp. TSO9 are necessary to complement findings regarding its application in agroecosystems to increase wheat yield sustainably.