Cargando…
Using SincNet for Learning Pathological Voice Disorders
Deep learning techniques such as convolutional neural networks (CNN) have been successfully applied to identify pathological voices. However, the major disadvantage of using these advanced models is the lack of interpretability in explaining the predicted outcomes. This drawback further introduces a...
Autores principales: | Hung, Chao-Hsiang, Wang, Syu-Siang, Wang, Chi-Te, Fang, Shih-Hau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460101/ https://www.ncbi.nlm.nih.gov/pubmed/36081092 http://dx.doi.org/10.3390/s22176634 |
Ejemplares similares
-
EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model
por: Zeng, Hong, et al.
Publicado: (2019) -
Detection of Audio Tampering Based on Electric Network Frequency Signal
por: Hsu, Hsiang-Ping, et al.
Publicado: (2023) -
Continuous Speech for Improved Learning Pathological Voice Disorders
Publicado: (2022) -
Pathology-Related Influences on the VEM: Three Years' Experience since Implementation of a New Parameter in Phoniatric Voice Diagnostics
por: Müller, Constanze, et al.
Publicado: (2020) -
The accuracy of an Online Sequential Extreme Learning Machine in detecting voice pathology using the Malaysian Voice Pathology Database
por: Za’im, Nur Ain Nabila, et al.
Publicado: (2023)