Cargando…
Nutritional Parameters, Biomass Production, and Antioxidant Activity of Festuca arundinacea Schreb. Conditioned with Selenium Nanoparticles
Festuca arundinacea Schreb. is a widely used type of forage due to its great ecological breadth and adaptability. An agricultural intervention that improves the selenium content in cultivated plants has been defined as bio-fortification, a complementary strategy to improve human and non-human animal...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460222/ https://www.ncbi.nlm.nih.gov/pubmed/36079707 http://dx.doi.org/10.3390/plants11172326 |
Sumario: | Festuca arundinacea Schreb. is a widely used type of forage due to its great ecological breadth and adaptability. An agricultural intervention that improves the selenium content in cultivated plants has been defined as bio-fortification, a complementary strategy to improve human and non-human animals’ nutrition. The advancement of science has led to an increased number of studies based on nanotechnologies, such as the development of nanoparticles (NPs) and their application in crop plants. Studies show that NPs have different physicochemical properties compared to bulk materials. The objectives of this study were (1) to determine the behavior of F. arundinacea Schreb. plants cultivated with Se nanoparticles, (2) to identify the specific behavior of the agronomic and productive variables of the F. arundinacea Schreb. plants, and (3) to quantify the production and quality of the forage produced from the plant (the bioactive compounds’ concentrations, antioxidant activity, and the concentration of selenium). Three different treatments of SeNPs were established (0, 1.5, 3.0, and 4.5 mg/mL). The effects of a foliar fertilization with SeNPs on the morphological parameters such as the root size, plant height, and biomass production were recorded, as well as the effects on the physicochemical parameters such as the crude protein (CP), lipids (L), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), carbohydrates (CH), the content of total phenols, total flavonoids, tannins, quantification of selenium and antioxidant activity 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Significant differences (p < 0.05) were found between treatments in all the response variables. The best results were obtained with foliar application treatments with 3.0 and 4.5 mg/mL with respect to the root size (12.79 and 15.59 cm) and plant height (26.18 and 29.34 cm). The F. arundinacea Schreb. plants fertilized with 4.5 mg/L had selenium contents of 0.3215, 0.3191, and 0.3218 mg/Kg MS; total phenols of 249.56, 280.02, and 274 mg EAG/100 g DM; and total flavonoids of 63.56, 64.96, and 61.16 mg QE/100 g DM. The foliar biofortified treatment with a concentration of 4.5 mg/mL Se NPs had the highest antioxidant capacities (284.26, 278.35, and 289.96 mg/AAE/100 g). |
---|