Cargando…
Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model
Human physical activity recognition from inertial sensors is shown to be a successful approach for monitoring elderly individuals and children in indoor and outdoor environments. As a result, researchers have shown significant interest in developing state-of-the-art machine learning methods capable...
Autores principales: | Tahir, Sheikh Badar ud din, Dogar, Abdul Basit, Fatima, Rubia, Yasin, Affan, Shafiq, Muhammad, Khan, Javed Ali, Assam, Muhammad, Mohamed, Abdullah, Attia, El-Awady |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460245/ https://www.ncbi.nlm.nih.gov/pubmed/36081091 http://dx.doi.org/10.3390/s22176632 |
Ejemplares similares
-
Wearable Inertial Sensors for Daily Activity Analysis Based on Adam Optimization and the Maximum Entropy Markov Model
por: Tahir, Sheikh Badar ud din, et al.
Publicado: (2020) -
Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization
por: Wieczorek, Grzegorz, et al.
Publicado: (2023) -
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems
por: Jalal, Ahmad, et al.
Publicado: (2020) -
Stochastic descriptors to study the fate and potential of naive T cell clonotypes in the periphery
por: Artalejo, J. R., et al.
Publicado: (2016) -
Distinctive accuracy measurement of binary descriptors in mobile augmented reality
por: Tan, Siok Yee, et al.
Publicado: (2019)