Cargando…
A Hardware-Friendly Low-Bit Power-of-Two Quantization Method for CNNs and Its FPGA Implementation
To address the problems of convolutional neural networks (CNNs) consuming more hardware resources (such as DSPs and RAMs on FPGAs) and their accuracy, efficiency, and resources being difficult to balance, meaning they cannot meet the requirements of industrial applications, we proposed an innovative...
Autores principales: | Sui, Xuefu, Lv, Qunbo, Bai, Yang, Zhu, Baoyu, Zhi, Liangjie, Yang, Yuanbo, Tan, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460272/ https://www.ncbi.nlm.nih.gov/pubmed/36081072 http://dx.doi.org/10.3390/s22176618 |
Ejemplares similares
-
A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation
por: Sui, Xuefu, et al.
Publicado: (2023) -
Blind Deblurring of Remote-Sensing Single Images Based on Feature Alignment
por: Zhu, Baoyu, et al.
Publicado: (2022) -
Customizable FPGA-Based Hardware Accelerator for Standard Convolution Processes Empowered with Quantization Applied to LiDAR Data
por: Silva, João, et al.
Publicado: (2022) -
Efficient BinDCT hardware architecture exploration and implementation on FPGA
por: Ben Abdelali, Abdessalem, et al.
Publicado: (2016) -
Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI
por: Pistellato, Mara, et al.
Publicado: (2023)