Cargando…
Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy
A brain-computer interface (BCI) translates a user’s thoughts such as motor imagery (MI) into the control of external devices. However, some people, who are defined as BCI illiteracy, cannot control BCI effectively. The main characteristics of BCI illiterate subjects are low classification rates and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460318/ https://www.ncbi.nlm.nih.gov/pubmed/36081031 http://dx.doi.org/10.3390/s22176572 |
_version_ | 1784786717935403008 |
---|---|
author | Tao, Lin Cao, Tianao Wang, Qisong Liu, Dan Sun, Jinwei |
author_facet | Tao, Lin Cao, Tianao Wang, Qisong Liu, Dan Sun, Jinwei |
author_sort | Tao, Lin |
collection | PubMed |
description | A brain-computer interface (BCI) translates a user’s thoughts such as motor imagery (MI) into the control of external devices. However, some people, who are defined as BCI illiteracy, cannot control BCI effectively. The main characteristics of BCI illiterate subjects are low classification rates and poor repeatability. To address the problem of MI-BCI illiteracy, we propose a distribution adaptation method based on multi-kernel learning to make the distribution of features between the source domain and target domain become even closer to each other, while the divisibility of categories is maximized. Inspired by the kernel trick, we adopted a multiple-kernel-based extreme learning machine to train the labeled source-domain data to find a new high-dimensional subspace that maximizes data divisibility, and then use multiple-kernel-based maximum mean discrepancy to conduct distribution adaptation to eliminate the difference in feature distribution between domains in the new subspace. In light of the high dimension of features of MI-BCI illiteracy, random forest, which can effectively handle high-dimensional features without additional cross-validation, was employed as a classifier. The proposed method was validated on an open dataset. The experimental results show that that the method we proposed suits MI-BCI illiteracy and can reduce the inter-domain differences, resulting in a reduction in the performance degradation of both cross-subjects and cross-sessions. |
format | Online Article Text |
id | pubmed-9460318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94603182022-09-10 Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy Tao, Lin Cao, Tianao Wang, Qisong Liu, Dan Sun, Jinwei Sensors (Basel) Article A brain-computer interface (BCI) translates a user’s thoughts such as motor imagery (MI) into the control of external devices. However, some people, who are defined as BCI illiteracy, cannot control BCI effectively. The main characteristics of BCI illiterate subjects are low classification rates and poor repeatability. To address the problem of MI-BCI illiteracy, we propose a distribution adaptation method based on multi-kernel learning to make the distribution of features between the source domain and target domain become even closer to each other, while the divisibility of categories is maximized. Inspired by the kernel trick, we adopted a multiple-kernel-based extreme learning machine to train the labeled source-domain data to find a new high-dimensional subspace that maximizes data divisibility, and then use multiple-kernel-based maximum mean discrepancy to conduct distribution adaptation to eliminate the difference in feature distribution between domains in the new subspace. In light of the high dimension of features of MI-BCI illiteracy, random forest, which can effectively handle high-dimensional features without additional cross-validation, was employed as a classifier. The proposed method was validated on an open dataset. The experimental results show that that the method we proposed suits MI-BCI illiteracy and can reduce the inter-domain differences, resulting in a reduction in the performance degradation of both cross-subjects and cross-sessions. MDPI 2022-08-31 /pmc/articles/PMC9460318/ /pubmed/36081031 http://dx.doi.org/10.3390/s22176572 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tao, Lin Cao, Tianao Wang, Qisong Liu, Dan Sun, Jinwei Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy |
title | Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy |
title_full | Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy |
title_fullStr | Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy |
title_full_unstemmed | Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy |
title_short | Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy |
title_sort | distribution adaptation and classification framework based on multiple kernel learning for motor imagery bci illiteracy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460318/ https://www.ncbi.nlm.nih.gov/pubmed/36081031 http://dx.doi.org/10.3390/s22176572 |
work_keys_str_mv | AT taolin distributionadaptationandclassificationframeworkbasedonmultiplekernellearningformotorimagerybciilliteracy AT caotianao distributionadaptationandclassificationframeworkbasedonmultiplekernellearningformotorimagerybciilliteracy AT wangqisong distributionadaptationandclassificationframeworkbasedonmultiplekernellearningformotorimagerybciilliteracy AT liudan distributionadaptationandclassificationframeworkbasedonmultiplekernellearningformotorimagerybciilliteracy AT sunjinwei distributionadaptationandclassificationframeworkbasedonmultiplekernellearningformotorimagerybciilliteracy |