Cargando…
Unsupervised SAR Imagery Feature Learning with Median Filter-Based Loss Value
The scarcity of open SAR (Synthetic Aperture Radars) imagery databases (especially the labeled ones) and sparsity of pre-trained neural networks lead to the need for heavy data generation, augmentation, or transfer learning usage. This paper described the characteristics of SAR imagery, the limitati...
Autor principal: | Gromada, Krzysztof |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460378/ https://www.ncbi.nlm.nih.gov/pubmed/36080978 http://dx.doi.org/10.3390/s22176519 |
Ejemplares similares
-
Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm
por: Wen, Xian-Bin, et al.
Publicado: (2008) -
Robustifying Vector Median Filter
por: Morillas, Samuel, et al.
Publicado: (2011) -
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
por: Wang, Xuying, et al.
Publicado: (2022) -
Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery
por: Marapareddy, Ramakalavathi, et al.
Publicado: (2016) -
Adaptive Marginal Median Filter for Colour Images
por: Morillas, Samuel, et al.
Publicado: (2011)