Cargando…

Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles

Nowadays, the development of the Internet of Things (IoT) concept has increased the interest in some technologies, one of which is the detection of anomalies in home appliances before they occur. In this work, in order to contribute to the works that use appliance power profiles for anomaly detectio...

Descripción completa

Detalles Bibliográficos
Autor principal: Apaydin-Özkan, Hanife
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460438/
https://www.ncbi.nlm.nih.gov/pubmed/36081098
http://dx.doi.org/10.3390/s22176639
_version_ 1784786747655192576
author Apaydin-Özkan, Hanife
author_facet Apaydin-Özkan, Hanife
author_sort Apaydin-Özkan, Hanife
collection PubMed
description Nowadays, the development of the Internet of Things (IoT) concept has increased the interest in some technologies, one of which is the detection of anomalies in home appliances before they occur. In this work, in order to contribute to the works that use appliance power profiles for anomaly detection, a novel Appliance Monitoring and Anomaly Detection System (AM-ADS) is presented. AM-ADS consists of a main controller, a database, IoT-based communication units, home appliances, and power measurement units (smart plugs or special measurement equipments) mounted on appliances. In AM-ADS, a new Control Chart (CC) based method, for the cases that a limited number of historical power profiles are available; and a new Artificial Neural Network (ANN) based method, for the cases that a sufficient number of historical power profiles of each anomaly free and anomalous situations are available, are used according to the developed rule-based AM-ADS procedure to maximize the advantages and to eliminate the disadvantages of these methods as much as possible. According to the AM-ADS procedure, power consumptions of appliances, which provide meaningful information about the health of appliances, are measured during their operations and the corresponding power profiles are created. Active power, power factor, and operation duration features of power profiles are considered as decisive control parameters and different characteristics of these parameters are used as inputs for CC and ANN-based methods. The efficiency and performance of AM-ADS are validated by application case studies, where the ability to detect anomalies varies between 94.56% and 99.03% when a limited number of historical data is available; and the ability to detect and classify anomalies varies between 96.34% and 99.45% when a sufficient number of historical data is available.
format Online
Article
Text
id pubmed-9460438
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94604382022-09-10 Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles Apaydin-Özkan, Hanife Sensors (Basel) Article Nowadays, the development of the Internet of Things (IoT) concept has increased the interest in some technologies, one of which is the detection of anomalies in home appliances before they occur. In this work, in order to contribute to the works that use appliance power profiles for anomaly detection, a novel Appliance Monitoring and Anomaly Detection System (AM-ADS) is presented. AM-ADS consists of a main controller, a database, IoT-based communication units, home appliances, and power measurement units (smart plugs or special measurement equipments) mounted on appliances. In AM-ADS, a new Control Chart (CC) based method, for the cases that a limited number of historical power profiles are available; and a new Artificial Neural Network (ANN) based method, for the cases that a sufficient number of historical power profiles of each anomaly free and anomalous situations are available, are used according to the developed rule-based AM-ADS procedure to maximize the advantages and to eliminate the disadvantages of these methods as much as possible. According to the AM-ADS procedure, power consumptions of appliances, which provide meaningful information about the health of appliances, are measured during their operations and the corresponding power profiles are created. Active power, power factor, and operation duration features of power profiles are considered as decisive control parameters and different characteristics of these parameters are used as inputs for CC and ANN-based methods. The efficiency and performance of AM-ADS are validated by application case studies, where the ability to detect anomalies varies between 94.56% and 99.03% when a limited number of historical data is available; and the ability to detect and classify anomalies varies between 96.34% and 99.45% when a sufficient number of historical data is available. MDPI 2022-09-02 /pmc/articles/PMC9460438/ /pubmed/36081098 http://dx.doi.org/10.3390/s22176639 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Apaydin-Özkan, Hanife
Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles
title Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles
title_full Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles
title_fullStr Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles
title_full_unstemmed Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles
title_short Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles
title_sort appliance-level anomaly detection by using control charts and artificial neural networks with power profiles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460438/
https://www.ncbi.nlm.nih.gov/pubmed/36081098
http://dx.doi.org/10.3390/s22176639
work_keys_str_mv AT apaydinozkanhanife appliancelevelanomalydetectionbyusingcontrolchartsandartificialneuralnetworkswithpowerprofiles