Cargando…
Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles
Nowadays, the development of the Internet of Things (IoT) concept has increased the interest in some technologies, one of which is the detection of anomalies in home appliances before they occur. In this work, in order to contribute to the works that use appliance power profiles for anomaly detectio...
Autor principal: | Apaydin-Özkan, Hanife |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460438/ https://www.ncbi.nlm.nih.gov/pubmed/36081098 http://dx.doi.org/10.3390/s22176639 |
Ejemplares similares
-
An Appliance Scheduling System for Residential Energy Management
por: Apaydin-Özkan, Hanife
Publicado: (2021) -
Anomaly Detection with Spiking Neural Networks
por: Borzyszkowski, Bartłomiej
Publicado: (2020) -
An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts
por: Barghash, Mahmoud
Publicado: (2015) -
Artificial neural network analysis of the day of the week anomaly in cryptocurrencies
por: Tosunoğlu, Nuray, et al.
Publicado: (2023) -
One-Class Convolutional Neural Networks for Water-Level Anomaly Detection
por: Nicholaus, Isack Thomas, et al.
Publicado: (2022)