Cargando…
Blind Turbo Equalization of Short CPM Bursts for UAV-Aided Internet of Things
With the surge of Internet of Things (IoT) applications using unmanned aerial vehicles (UAVs), there is a huge demand for an excellent complexity/power efficiency trade-off and channel fading resistance at the physical layer. In this paper, we consider the blind equalization of short-continuous-phas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460518/ https://www.ncbi.nlm.nih.gov/pubmed/36080964 http://dx.doi.org/10.3390/s22176508 |
Sumario: | With the surge of Internet of Things (IoT) applications using unmanned aerial vehicles (UAVs), there is a huge demand for an excellent complexity/power efficiency trade-off and channel fading resistance at the physical layer. In this paper, we consider the blind equalization of short-continuous-phase-modulated (CPM) burst for UAV-aided IoT. To solve the problems of the high complexity and poor convergence of short-burst CPM blind equalization, a novel turbo blind equalization algorithm is proposed based on establishing a new expectation–maximization Viterbi (EMV) algorithm and turbo scheme. Firstly, a low complexity blind equalization algorithm is obtained by applying the soft-output Lazy Viterbi algorithm within the EM algorithm iteration. Furthermore, a set of initializers that achieves a high global convergence probability is designed by the blind channel-acquisition (BCA) method. Meanwhile, a soft information iterative process is used to improve the system performance. Finally, the convergence, bit error rate, and real-time performance of iterative detection can be further improved effectively by using improved exchange methods of extrinsic information and the stopping criterion. The analysis and simulation results show that the proposed algorithm achieves a good blind equalization performance and low complexity. |
---|