Cargando…
HAT4RD: Hierarchical Adversarial Training for Rumor Detection in Social Media
With the development of social media, social communication has changed. While this facilitates people’s communication and access to information, it also provides an ideal platform for spreading rumors. In normal or critical situations, rumors can affect people’s judgment and even endanger social sec...
Autores principales: | Ni, Shiwen, Li, Jiawen, Kao, Hung-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460538/ https://www.ncbi.nlm.nih.gov/pubmed/36081111 http://dx.doi.org/10.3390/s22176652 |
Ejemplares similares
-
Rumor detection on social media using hierarchically aggregated feature via graph neural networks
por: Xu, Shouzhi, et al.
Publicado: (2022) -
Multi-modal affine fusion network for social media rumor detection
por: Fu, Boyang, et al.
Publicado: (2022) -
Impact of Rumors and Misinformation on COVID-19 in Social Media
por: Tasnim, Samia, et al.
Publicado: (2020) -
Rumor Propagation is Amplified by Echo Chambers in Social Media
por: Choi, Daejin, et al.
Publicado: (2020) -
Fighting rumors to fight COVID-19: Investigating rumor belief and sharing on social media during the pandemic
por: Guo, Feng, et al.
Publicado: (2023)