Cargando…

Robust Template Matching Using Multiple-Layered Absent Color Indexing

Color is an essential feature in histogram-based matching. This can be extracted as statistical data during the comparison process. Although the applicability of color features in histogram-based techniques has been proven, position information is lacking during the matching process. We present a co...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Guodong, Tian, Ying, Kaneko, Shun’ichi, Jiang, Zhengang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460572/
https://www.ncbi.nlm.nih.gov/pubmed/36081120
http://dx.doi.org/10.3390/s22176661
Descripción
Sumario:Color is an essential feature in histogram-based matching. This can be extracted as statistical data during the comparison process. Although the applicability of color features in histogram-based techniques has been proven, position information is lacking during the matching process. We present a conceptually simple and effective method called multiple-layered absent color indexing (ABC-ML) for template matching. Apparent and absent color histograms are obtained from the original color histogram, where the absent colors belong to low-frequency or vacant bins. To determine the color range of compared images, we propose a total color space (TCS) that can determine the operating range of the histogram bins. Furthermore, we invert the absent colors to obtain the properties of these colors using threshold [Formula: see text]. Then, we compute the similarity using the intersection. A multiple-layered structure is proposed against the shift issue in histogram-based approaches. Each layer is constructed using the isotonic principle. Thus, absent color indexing and multiple-layered structure are combined to solve the precision problem. Our experiments on real-world images and open data demonstrated that they have produced state-of-the-art results. Moreover, they retained the histogram merits of robustness in cases of deformation and scaling.