Cargando…
Evaluation of Three Feature Dimension Reduction Techniques for Machine Learning-Based Crop Yield Prediction Models
Machine learning (ML) has been widely used worldwide to develop crop yield forecasting models. However, it is still challenging to identify the most critical features from a dataset. Although either feature selection (FS) or feature extraction (FX) techniques have been employed, no research compares...
Autores principales: | Pham, Hoa Thi, Awange, Joseph, Kuhn, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460661/ https://www.ncbi.nlm.nih.gov/pubmed/36081066 http://dx.doi.org/10.3390/s22176609 |
Ejemplares similares
-
Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices
por: Pham, Hoa Thi, et al.
Publicado: (2022) -
Using machine learning for crop yield prediction in the past or the future
por: Morales, Alejandro, et al.
Publicado: (2023) -
County-scale crop yield prediction by integrating crop simulation with machine learning models
por: Sajid, Saiara Samira, et al.
Publicado: (2022) -
Hybrid imaging and visualization: employing machine learning with Mathematica - Python
por: Awange, Joseph, et al.
Publicado: (2020) -
Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
por: Shahhosseini, Mohsen, et al.
Publicado: (2021)