Cargando…
A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding
Humans learn about the environment by interacting with it. With an increasing use of computer and virtual applications as well as robotic and prosthetic devices, there is a need for intuitive interfaces that allow the user to have an embodied interaction with the devices they are controlling. Muscle...
Autores principales: | Dwivedi, Anany, Groll, Helen, Beckerle, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460678/ https://www.ncbi.nlm.nih.gov/pubmed/36080778 http://dx.doi.org/10.3390/s22176319 |
Ejemplares similares
-
Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
por: Saeidi, Maham, et al.
Publicado: (2021) -
Deep Learning-Based Approaches for Decoding Motor Intent From Peripheral Nerve Signals
por: Luu, Diu K., et al.
Publicado: (2021) -
On lightmyography based muscle-machine interfaces for the efficient decoding of human gestures and forces
por: Shahmohammadi, Mojtaba, et al.
Publicado: (2023) -
Decoding Intention at Sensorimotor Timescales
por: Salvaris, Mathew, et al.
Publicado: (2014) -
Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks
por: Yan, Yongsheng, et al.
Publicado: (2015)