Cargando…
Autonomous Rear Parking via Rapidly Exploring Random-Tree-Based Reinforcement Learning
This study addresses the problem of autonomous rear parking (ARP) for car-like nonholonomic vehicles. ARP includes path planning to generate an efficient collision-free path from the start point to the target parking slot and path following to produce control inputs to stably follow the generated pa...
Autores principales: | Shahi, Saugat, Lee, Heoncheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460702/ https://www.ncbi.nlm.nih.gov/pubmed/36081115 http://dx.doi.org/10.3390/s22176655 |
Ejemplares similares
-
Reinforcement Learning-Based End-to-End Parking for Automatic Parking System
por: Zhang, Peizhi, et al.
Publicado: (2019) -
Development of an Improved Rapidly Exploring Random Trees Algorithm for Static Obstacle Avoidance in Autonomous Vehicles
por: Yang, S. M., et al.
Publicado: (2021) -
Autonomous maneuver decision-making method based on reinforcement learning and Monte Carlo tree search
por: Zhang, Hongpeng, et al.
Publicado: (2022) -
Deep-Learning-Based Parking Area and Collision Risk Area Detection Using AVM in Autonomous Parking Situation
por: Lee, Sunwoo, et al.
Publicado: (2022) -
End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation
por: Ruan, Xiaogang, et al.
Publicado: (2021)