Cargando…

Augmentation Method for High Intra-Class Variation Data in Apple Detection

Deep learning is widely used in modern orchard production for various inspection missions, which helps improve the efficiency of orchard operations. In the mission of visual detection during fruit picking, most current lightweight detection models are not yet effective enough to detect multi-type oc...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Huibin, Guo, Wei, Lu, Guowen, Shi, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460715/
https://www.ncbi.nlm.nih.gov/pubmed/36080783
http://dx.doi.org/10.3390/s22176325
Descripción
Sumario:Deep learning is widely used in modern orchard production for various inspection missions, which helps improve the efficiency of orchard operations. In the mission of visual detection during fruit picking, most current lightweight detection models are not yet effective enough to detect multi-type occlusion targets, severely affecting automated fruit-picking efficiency. This study addresses this problem by proposing the pioneering design of a multi-type occlusion apple dataset and an augmentation method of data balance. We divided apple occlusion into eight types and used the proposed method to balance the number of annotation boxes for multi-type occlusion apple targets. Finally, a validation experiment was carried out using five popular lightweight object detection models: yolox-s, yolov5-s, yolov4-s, yolov3-tiny, and efficidentdet-d0. The results show that, using the proposed augmentation method, the average detection precision of the five popular lightweight object detection models improved significantly. Specifically, the precision increased from 0.894 to 0.974, recall increased from 0.845 to 0.972, and mAP0.5 increased from 0.982 to 0.919 for yolox-s. This implies that the proposed augmentation method shows great potential for different fruit detection missions in future orchard applications.