Cargando…
High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating
We propose and demonstrate a novel high-temperature-resistant vector accelerometer, consisting of a ring cavity laser and sensing probe (i.e., fiber Bragg gratings (FBGs)) inscribed in a seven-core fiber (SCF) by using the femtosecond laser direct writing technique. A ring cavity laser serves as a l...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460730/ https://www.ncbi.nlm.nih.gov/pubmed/36080917 http://dx.doi.org/10.3390/s22176459 |
Sumario: | We propose and demonstrate a novel high-temperature-resistant vector accelerometer, consisting of a ring cavity laser and sensing probe (i.e., fiber Bragg gratings (FBGs)) inscribed in a seven-core fiber (SCF) by using the femtosecond laser direct writing technique. A ring cavity laser serves as a light source. Three FBGs in the outer cores of SCF, which are not aligned in a straight line, are employed to test the vibration. These three FBGs have 120° angular separation in the SCF, and hence, vibration orientation and acceleration can be measured simultaneously. Moreover, the FBG in the central core was used as a reflector in the ring cavity laser, benefiting to resist external interference factors, such as temperature and strain fluctuation. Such a proposed accelerometer exhibits a working frequency bandwidth ranging from 4 to 68 Hz, a maximum sensitivity of 54.2 mV/g, and the best azimuthal angle accuracy of 0.21° over a range of 0–360°. Furthermore, we investigated the effect of strain and temperature on the performance of this sensor. The signal-to-noise ratio (SNR) only exhibits a fluctuation of ~1 dB in the range (0, 2289 με) and (50 °C, 1050 °C). Hence, such a vector accelerometer can operate in harsh environments, such as in aerospace and a nuclear reactor. |
---|