Cargando…
Explainability and Transparency of Classifiers for Air-Handling Unit Faults Using Explainable Artificial Intelligence (XAI)
In recent years, explainable artificial intelligence (XAI) techniques have been developed to improve the explainability, trust and transparency of machine learning models. This work presents a method that explains the outputs of an air-handling unit (AHU) faults classifier using a modified XAI techn...
Autores principales: | Meas, Molika, Machlev, Ram, Kose, Ahmet, Tepljakov, Aleksei, Loo, Lauri, Levron, Yoash, Petlenkov, Eduard, Belikov, Juri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460735/ https://www.ncbi.nlm.nih.gov/pubmed/36080795 http://dx.doi.org/10.3390/s22176338 |
Ejemplares similares
-
Framework for Classifying Explainable Artificial Intelligence (XAI) Algorithms in Clinical Medicine
por: Gniadek, Thomas, et al.
Publicado: (2023) -
Bridging the Gap in Technology Transfer for Advanced Process Control with Industrial Applications
por: Vansovits, Vitali, et al.
Publicado: (2022) -
Hands-On Explainable AI (XAI) with Python
por: Rothman, Denis
Publicado: (2020) -
Editorial: Explainable Artificial Intelligence (XAI) in Systems Neuroscience
por: Lombardi, Angela, et al.
Publicado: (2021) -
Beauty is in the explainable artificial intelligence (XAI) of the “agnostic” beholder
por: Laios, Alexandros, et al.
Publicado: (2023)