Cargando…
SAS-SEINet: A SNR-Aware Adaptive Scalable SEI Neural Network Accelerator Using Algorithm–Hardware Co-Design for High-Accuracy and Power-Efficient UAV Surveillance †
As a potential air control measure, RF-based surveillance is one of the most commonly used unmanned aerial vehicles (UAV) surveillance methods that exploits specific emitter identification (SEI) technology to identify captured RF signal from ground controllers to UAVs. Recently many SEI algorithms b...
Autores principales: | Gan, Jiayan, Hu, Ang, Kang, Ziyi, Qu, Zhipeng, Yang, Zhanxiang, Yang, Rui, Wang, Yibing, Shao, Huaizong, Zhou, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460747/ https://www.ncbi.nlm.nih.gov/pubmed/36080990 http://dx.doi.org/10.3390/s22176532 |
Ejemplares similares
-
SNR Prediction with ANN for UAV Applications in IoT Networks Based on Measurements
por: Cardoso, Caio M. M., et al.
Publicado: (2022) -
Tackling SNR at low-field: a review of hardware approaches for point-of-care systems
por: Webb, Andrew, et al.
Publicado: (2023) -
Continuous Hidden Markov Model Based Spectrum Sensing with Estimated SNR for Cognitive UAV Networks
por: Feng, Yuqing, et al.
Publicado: (2022) -
The Spectrum Analysis Solution (SAS) System: Theoretical Analysis, Hardware Design and Implementation
por: Narayanan, Ram M., et al.
Publicado: (2018) -
A Survey on UAV Computing Platforms: A Hardware Reliability Perspective
por: Ahmed, Foisal, et al.
Publicado: (2022)