Cargando…

Wavelet-Domain Information-Hiding Technology with High-Quality Audio Signals on MEMS Sensors

Due to the rapid development of sensor technology and the popularity of the Internet, not only has the amount of digital information transmission skyrocketed, but also its acquisition and dissemination has become easier. The study mainly investigates audio security issues with data compression for p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Ming, Chen, Shuo-Tsung, Tu, Shu-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460818/
https://www.ncbi.nlm.nih.gov/pubmed/36081009
http://dx.doi.org/10.3390/s22176548
Descripción
Sumario:Due to the rapid development of sensor technology and the popularity of the Internet, not only has the amount of digital information transmission skyrocketed, but also its acquisition and dissemination has become easier. The study mainly investigates audio security issues with data compression for private data transmission on the Internet or MEMS (micro-electro-mechanical systems) audio sensor digital microphones. Imperceptibility, embedding capacity, and robustness are three main requirements for audio information-hiding techniques. To achieve the three main requirements, this study proposes a high-quality audio information-hiding technology in the wavelet domain. Due to the fact that wavelet domain provides a useful and robust platform for audio information hiding, this study applies multi-coefficients of discrete wavelet transform (DWT) to hide information. By considering a good, imperceptible concealment, we combine signal-to-noise ratio (SNR) with quantization embedding for these coefficients in a mathematical model. Moreover, amplitude-thresholding compression technology is combined in this model. Finally, the matrix-type Lagrange principle plays an essential role in solving the model so as to reduce the carrying capacity of network transmission while protecting personal copyright or private information. Based on the experimental results, we nearly maintained the original quality of the embedded audio by optimization of signal-to-noise ratio (SNR). Moreover, the proposed method has good robustness against common attacks.