Cargando…
Image Semantic Segmentation of Underwater Garbage with Modified U-Net Architecture Model
Autonomous underwater garbage grasping and collection pose a great challenge to underwater robots. To assist underwater robots in locating and recognizing underwater garbage objects efficiently, a modified U-Net-based architecture consisting of a deeper contracting path and an expansive path is prop...
Autores principales: | Wei, Lifu, Kong, Shihan, Wu, Yuquan, Yu, Junzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460826/ https://www.ncbi.nlm.nih.gov/pubmed/36081003 http://dx.doi.org/10.3390/s22176546 |
Ejemplares similares
-
A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot
por: Tian, Manjun, et al.
Publicado: (2022) -
Semantic segmentation method of underwater images based on encoder-decoder architecture
por: Wang, Jinkang, et al.
Publicado: (2022) -
AID-U-Net: An Innovative Deep Convolutional Architecture for Semantic Segmentation of Biomedical Images
por: Tashk, Ashkan, et al.
Publicado: (2022) -
Modified U-NET Architecture for Segmentation of Skin Lesion
por: Anand, Vatsala, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022)